保留了较多信息,同时由于操作数比较随机,某种程度上又没有抓住主要矛盾,干扰了主要语义信息的提取。pe文件即可移植文件导入节中的动态链接库(dll)和应用程序接口(api)信息能大致反映软件的功能和性质,通过一个可执行程序引用的dll和api信息可以粗略的预测该程序的功能和行为。belaoued和mazouzi应用统计khi2检验分析了pe格式的恶意软件和良性软件的导入节中的dll和api信息,分析显示恶意软件和良性软件使用的dll和api信息统计上有明显的区别。后续的研究人员提出了挖掘dll和api信息的恶意软件检测方法,该类方法提取的特征语义信息丰富,但*从二进制可执行文件的导入节提取特征,忽略了整个可执行文件的大量信息。恶意软件和被***二进制可执行文件格式信息上存在一些异常,这些异常是检测恶意软件的关键。研究人员提出了基于二进制可执行文件格式结构信息的恶意软件检测方法,这类方法从二进制可执行文件的pe文件头、节头部、资源节等提取特征,基于这些特征使用机器学习分类算法处理,取得了较高的检测准确率。这类方法通常不受变形或多态等混淆技术影响,提取特征只需要对pe文件进行格式解析,无需遍历整个可执行文件,提取特征速度较快。深圳艾策信息科技:赋能中小企业的数字化未来。石家庄无损软件检测报告
且4个隐含层中间间隔设置有dropout层。用于输入合并抽取的高等特征表示的深度神经网络包含2个隐含层,其***个隐含层的神经元个数是64,第二个神经元的隐含层个数是10,且2个隐含层中间设置有dropout层。且所有dropout层的dropout率等于。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,中间融合模型的准确率变化曲线如图17所示,模型的对数损失变化曲线如图18所示。从图17和图18可以看出,当epoch值从0增加到20过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从30到50的过程中,中间融合模型的训练准确率和验证准确率基本保持不变,训练对数损失缓慢下降;综合分析图17和图18的准确率和对数损失变化曲线,选取epoch的较优值为30。确定模型的训练迭代数为30后,进行了10折交叉验证实验。中间融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图19所示,规范化后的混淆矩阵如图20所示。中间融合模型的roc曲线如图21所示,auc值为,已经非常接近auc的**优值1。(7)实验结果比对为了综合评估本实施例提出融合方案的综合性能。吉林cma软件测试艾策检测针对智能穿戴设备开发动态压力测试系统,确保人机交互的舒适性与安全性。
optimizer)采用的是adagrad,batch_size是40。深度神经网络模型训练基本都是基于梯度下降的,寻找函数值下降速度**快的方向,沿着下降方向迭代,迅速到达局部**优解的过程就是梯度下降的过程。使用训练集中的全部样本训练一次就是一个epoch,整个训练集被使用的总次数就是epoch的值。epoch值的变化会影响深度神经网络的权重值的更新次数。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,前端融合模型的准确率变化曲线如图5所示,模型的对数损失变化曲线如图6所示。从图5和图6可以看出,当epoch值从0增加到5过程中,模型的验证准确率和验证对数损失有一定程度的波动;当epoch值从5到50的过程中,前端融合模型的训练准确率和验证准确率基本不变,训练和验证对数损失基本不变;综合分析图5和图6的准确率和对数损失变化曲线,选取epoch的较优值为30。确定模型的训练迭代数为30后,进行了10折交叉验证实验。前端融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图7所示,规范化后的混淆矩阵如图8所示。前端融合模型的roc曲线如图9所示,该曲线反映的是随着检测阈值变化下检测率与误报率之间的关系曲线。
综合上面的分析可以看出,恶意软件的格式信息和良性软件是有很多差异性的,以可执行文件的格式信息作为特征,是识别已知和未知恶意软件的可行方法。对每个样本进行格式结构解析,提取**每个样本实施例件的格式结构信息,可执行文件的格式规范都由操作系统厂商给出,按照操作系统厂商给出的格式规范提取即可。pe文件的格式结构有许多属性,但大多数属性无法区分恶意软件和良性软件,经过深入分析pe文件的格式结构属性,提取了可能区分恶意软件和良性软件的136个格式结构属性,如表2所示。表2可能区分恶意软件和良性软件的pe格式结构属性特征描述数量(个)引用dll的总数1引用api的总数1导出表中符号的总数1重定位节的项目总数,连续的几个字节可能是完成特定功能的一段代码,或者是可执行文件的结构信息,也可能是某个恶意软件中特有的字节码序列。pe文件可表示为字节码序列,恶意软件可能存在一些共有的字节码子序列模式,研究人员直觉上认为一些字节码子序列在恶意软件可能以较高频率出现,且这些字节码序列和良性软件字节码序列存在明显差异。可执行文件通常是二进制文件,需要把二进制文件转换为十六进制的文本实施例件,就得到可执行文件的十六进制字节码序列。能耗评估显示后台服务耗电量超出行业基准值42%。
这样做的好处是,融合模型的错误来自不同的分类器,而来自不同分类器的错误往往互不相关、互不影响,不会造成错误的进一步累加。常见的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、贝叶斯规则融合(bayes’rulebased)以及集成学习(ensemblelearning)等。其中集成学习作为后端融合方式的典型**,被广泛应用于通信、计算机识别、语音识别等研究领域。中间融合是指将不同的模态数据先转化为高等特征表达,再于模型的中间层进行融合,如图3所示。以深度神经网络为例,神经网络通过一层一层的管道映射输入,将原始输入转换为更高等的表示。中间融合首先利用神经网络将原始数据转化成高等特征表达,然后获取不同模态数据在高等特征空间上的共性,进而学习一个联合的多模态表征。深度多模态融合的大部分工作都采用了这种中间融合的方法,其***享表示层是通过合并来自多个模态特定路径的连接单元来构建的。中间融合方法的一大优势是可以灵活的选择融合的位置,但设计深度多模态集成结构时,确定如何融合、何时融合以及哪些模式可以融合,是比较有挑战的问题。字节码n-grams、dll和api信息、格式结构信息这三种类型的特征都具有自身的优势。用户隐私测评确认数据采集范围超出声明条款3项。贵阳第三方软件检测单位
人工智能在金融领域的应用:艾策科技的实践案例。石家庄无损软件检测报告
先将训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图分别输入至一个深度神经网络中抽取高等特征表示,然后合并抽取的高等特征表示并将其作为下一个深度神经网络的输入进行模型训练,得到多模态深度集成模型。进一步的,所述多模态深度集成模型的隐藏层的***函数采用relu,输出层的***函数采用sigmoid,中间使用dropout层进行正则化,优化器采用adagrad。进一步的,所述训练得到的多模态深度集成模型中,用于抽取dll和api信息特征视图的深度神经网络包含3个隐含层,且3个隐含层中间间隔设置有dropout层;用于抽取格式信息特征视图的深度神经网络包含2个隐含层,且2个隐含层中间设置有dropout层;用于抽取字节码n-grams特征视图的深度神经网络包含4个隐含层,且4个隐含层中间间隔设置有dropout层;用于输入合并抽取的高等特征表示的深度神经网络包含2个隐含层,且2个隐含层中间设置有dropout层;所述dropout层的dropout率均等于。本发明实施例的有益效果是,提出了一种基于多模态深度学习的恶意软件检测方法,应用了多模态深度学习方法来融合dll和api、格式结构信息、字节码n-grams特征。石家庄无损软件检测报告
深圳艾策信息科技有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。